How do new e-vehicles compare to bicycles? New measurement challenges and opportunities for safety analyses

Ashwij Madhusudan Rao, Di Xue, Estelle Aimar, Nithin Revadal, Weicheng Xiao, Alessio Violin, Alexander Rasch and Marco Dozza

Keywords: electric scooters, riding behavior, stability, maneuverability, obstacle avoidance

Today, technology and digitalization promote unprecedented solutions for personal mobility. For instance, during 2019, e-scooters became suddenly ubiquitous in several cities around the globe, rising new concerns about urban safety. Monowheels, electric skateboards, hoverboards, and other electric personal mobility vehicles (e-PMVs) are also on the rise and are changing the traffic systems. To keep the traffic system safe, we need to understand how these new e-PMVs behave and interact with other road-users and the infrastructure.

In this project, we reviewed e-PMVs on the market and instrumented a few of them in order to measure how they may compare to traditional bicycles in terms of safety. We used inertial measurement units, steering angle sensors and a LIDAR to measure both bicycle and e-PMV dynamics with an existing protocol in field trials.

Our preliminary results show that, although some of the new e-PMVs may present an alternative to cycling, they may pose different safety challenges compared to bicycles. In this respect, the role of learning is central for a correct and safe use of e-PMVs.

Different types of e-PMVs also necessitate different instrumentation in order to capture the vehicle kinematics that may be crucial for the stability and maneuverability of each individual e-PMV. The definition of stability and maneuverability from traditional bicycle dynamics may need revision before its application to e-PMVs. Specifically, while e-scooters may still suffer from similar stability issues than bicycles, hoverboards are more concerned with longitudinal than with lateral stability. Maneuverability is important for obstacle avoidance; our preliminary results suggest that avoidance by steering and braking are vehicle-specific and will result in different types of e-PMVs being challenged in different ways by the infrastructure and the weather conditions.

A larger study is now planned to collect more data and provide statistically sound insights on the stability and maneuverability of new e-PMVs in comparison to bicycles. The main results from this larger study will be presented at the conference.